
A Spark of Defiance
By: The 256 Foundation
A monthly newsletter

January 2025

Introduction:
Welcome to the first newsletter produced by The 256
Foundation! If you have enjoyed POD256 or technical
guides from econoalchemist in the past, then you are
going to love this newsletter. You can expect newsletters to
be published on a monthly basis going forward. The content
will generally focus on topics aligned with The 256
Foundation’s mission to “Dismantle the proprietary mining
empire to liberate Bitcoin and freedom tech for all”. More
specifically, the focus of this newsletter will be on the state
of the Bitcoin network, mining industry developments,
progress updates on grant projects, actionable advice for
getting involved with Bitcoin mining, and more (to be
announced...wink wink).

Open-source development in Bitcoin mining up until the
Bitaxe has been non-existent but The 256 Foundation is
breaking the chains of closed and proprietary development.
After all, two out of three pillars supporting the Bitcoin
ecosystem are openly developed – nodes and applications;
why not mining? The majority of mining hardware is closed
and proprietary; same with the firmware, even the after-
market solutions are closed-source. If you have tried using a
miner in some unconventional way like home heating,
dehydrating food, or installing one in your living space just
so you don’t have to submit KYC documents to get bitcoin
then you will appreciate the ability to freely modify your
miner.

Despite the constraints on creativity caused by closed-
source firmware and hardware, many individuals have
demonstrated impressive developments. For example,
Diverter who wrote the groundbreaking guide on the
subject, Mining For The Streets, at a time when the general
consensus was that small-scale mining was a foregone
pursuit. Zack Bomsta developed the Loki Kit enabling users
to power miners from 120-volt power sources instead of the
less common 240-volt power sources. Michael Schmid
developed a way to heat his home using four Antminer S9s;
offsetting his energy bills with mining rewards. Rev. Hodl
has integrated Bitcoin mining into a variety of
homesteading functions like dehydrating his elderberry
harvest. In fact, the resourcefulness and determination of
individuals to integrate Bitcoin mining into their unique
situations has proven to be nothing short of a full on
movement. Defiantly building and iterating despite the
naysayers, excuse makers, and protests that claim “you

can’t compete with big miners! You’re better off just
buying from an exchange! You won’t get your ROI!”.

Against all odds, using closed-source miners, and with little
more than a shoestring budget and a can-do attitude people
have forged a way forward and collectively pushed the
Bitcoin mining industry to a tipping point. Closed-source
solutions are not keeping up with innovation and won’t
even make economic sense compared to the open-source
solutions just over the horizon. The 256 Foundation is here
to kick the old ways of Bitcoin mining development to the
curb in favor of free and open development; providing
funding for developers and educators to do what they do
best and usher in the era free and open Bitcoin mining.

The 256 Foundation is laser focused on a select handful of
projects that are going to break the entire Bitcoin mining
industry wide open and make freedom tech accessible to
anyone. These select projects are long term support
initiatives, not short term touch-and-go exercises. Education
is a key component and why The 256 Foundation provides
educational resources, tools, and support to demystify
Bitcoin and freedom tech, empowering individuals to
engage with and benefit from this revolutionary system.

If that sounds like the kind of timeline you’re interested in
then keep reading and watch for updates every month in
your inbox, on Nostr, or at 256foundation.org.

Definitions:
MA = Moving Average
Eh/s = Exahash per second
Ph/s = Petahash per second
Th/s = Terahash per second
MW = Mega Watt
T = Trillion
J/Th = Joules per Terahash
$ = US Dollar
VDC = Volts Direct Current
PCB = Printed Circuit Board
GB = Gigabyte
TB = Terabyte
OS = Operating System
SSH = Secure Shell

State of the Network:
Hashrate on the 14-day MA according to mempool.space
increased from ~525 Eh/s in January 2024 to ~784 Eh/s in

The 256 Foundation
Page 1 of 10

https://www.pod256.org/
https://web.archive.org/web/20230521030129mp_/https://diverter.hostyourown.tools/mining-for-the-streets/
https://mempool.space/graphs/mining/hashrate-difficulty#1y
https://256foundation.org/
https://yakihonne.com/notes/nevent1qgsy6q3ua80awknlxp6m368qssqghct6ra6scca4meepumhcswkuwegqyz2kztqsguqdyksa6ry4g0ws0kzu59p02vgmkeyxe97cmxk43jej5xl9zce
https://yakihonne.com/notes/nevent1qgsy6q3ua80awknlxp6m368qssqghct6ra6scca4meepumhcswkuwegqyz2kztqsguqdyksa6ry4g0ws0kzu59p02vgmkeyxe97cmxk43jej5xl9zce
https://x.com/HodlRev
https://x.com/Schnitzel/status/1610311138004144128
https://pivotalpleb.com/collections/frontpage/products/loki-kit
https://x.com/zbomstaz
https://x.com/Diverter_NoKYC
https://x.com/econoalchemist

December 2024, marking ~49% growth for the year. Last
month alone, December 2024, witnessed roughly 34 Eh/s
come online marking ~4.5% overall growth for the month.
Using some rough ball-park figures, 34 Eh/s coming online
means something like 170,000 new-gen 200 Th/s miners
were plugged in and supported by ~595 MW of electrical
infrastructure.

Difficulty is currently 110.4T as of Epoch 436 and set to
decrease roughly 0.2% on or around January 26, 2025. But
that target will constantly change between now and then.
The previous re-target increased difficulty by 0.6%. In
2024, difficulty went from 72.0T to 109.7T making it 52.3%
more difficult to solve for a block; fairly consistent with the
estimated 49% hashrate increase during the same time
frame.

[IMG-001] 2024 hashrate/difficulty chart from mempool.space

New-gen miners are selling for roughly $28.14 per Th
using the Bitmain Antminer S21 XP 270 Th/s model from
Kaboom Racks as an example. According to the Hashrate
Index, less efficient miners like the <19J/Th models are
fetching $18.18/Th, models between 19J/Th – 25J/Th are
selling for $13.31/Th, and models >25J/Th are selling for
$3.53/Th.

[IMG-002] 2024 Miner Prices from Luxor’s Hashrate Index

Hashvalue is currently 58,000 sats/Ph per day, down slightly
from December 1, 2024 when hashvalue was closer to
63,000 sats/Ph per day according to Braiins Insights.
Hashprice is $58.00/Ph per day, down slightly from
$60.00/Ph per day at the beginning of December 2024,
[IMG-003]. Overall, hashvalue is down 76% from 242,000
sats/Ph per day a year ago and hashprice is down 43% from
$103.00 per Ph/day a year ago. But keep in mind, the block
subsidy was 6.25 bitcoin per block a year ago and is
currently 3.125 bitcoin per block.

The next halving will occur at block height 1,050,000 which
should be in roughly 1,159 days or in other words 170,594
blocks from time of publishing this newsletter.

[IMG-003] Hashprice/Hashvalue from Braiins Insights

Mining Industry Developments:
2024 marks the year that open-source Bitcoin mining
hardware became a thing. Prior to the Bitaxe, there was no
open source Bitcoin mining hardware. A small but mighty
platform, the Bitaxe project has proved that it is possible to
have a complete Bitcoin mining system developed, built,
and maintained in the open by a community of enthusiasts.

The impressive part about Bitaxe is that Skot instigated a
project that satisfied a burning desire in the open-source
community to develop a mining system by reverse
engineering Bitmain’s ASIC chips and integrate them onto a
new open-source hardware platform, with accompanying
open-source firmware, esp-miner. Fast forward to today and
thousands of individuals have joined the Open Source
Miners United Discord group and their combined
contributions have made Bitaxe what it is today. This
required delicate work to unsolder the ASIC chips from
Bitmain’s hashboards and then re-solder them onto the
Bitaxe circuit board. The genius part of the project is that
the open-source foundation supports commercially viable
ventures built on top of it. For example, Bitaxe is the open-
source project that develops and designs models but does
not manufacture, market, or distribute any units; a list of
companies that have sprung up selling Bitaxes can be found
here.

The Bitaxe was the inspiration for the title of this month’s
newsletter, A Spark of Defiance, because it was a small and
seemingly inconsequential development that ignited a
raging fire that will engulf the closed and proprietary
Bitcoin mining empire. Additionally, the project was
defiantly manifested through persistent and painstaking
effort despite what many claimed was too insignificant of a
hashrate, too uneconomical of a price point, and too cute to
be anything other than a toy. The significance of the Bitaxe
project is not in the nominal hashrate of a single unit or the
cost per terahash; the significance is that there is now a
proven open-source Bitcoin mining hardware option
available for anyone to build themselves and modify as they
see fit that supports commercial applications. The idea of
open-source Bitcoin mining hardware is still early in it’s
formation but the next iteration is already under way.

Small scale miners like FutureBit’s Apollo II and the Bitaxe
help decentralize hashrate. Even though each individual
miner doesn’t amount to much, the aggregate hashrate
contributed to the network is significant; both in terms of
nominal hashpower and in terms of distribution. The more
people who control mining hardware means fewer miners

The 256 Foundation
Page 2 of 10

https://www.futurebit.io/
https://bitaxe.org/legit.html
https://discord.gg/osmu
https://discord.gg/osmu
https://github.com/skot/esp-miner
https://x.com/skot9000
https://bitaxe.org/
https://insights.braiins.com/en
https://data.hashrateindex.com/asic-index-data/price-index
https://data.hashrateindex.com/asic-index-data/price-index
https://x.com/kaboomracks

condensed in hostile jurisdictions and the more individuals
who need to be compliant with unjust demands in order for
those demands to be effective. These are critical steps
towards a more censorship-resistant network and the arch of
progress is measured in years, however there is more
needed to bolster Bitcoin’s neutral and permissionless
attributes which guide The 256 Foundation’s projects.

[IMG-004] Picture of a Bitaxe 401 from Public-Pool

Grant Project Updates:
In November 2024 The 256 Foundation announced the first
fully funded grant project, Ember One. This project builds
on the momentum of the Bitaxe project and takes it to the
next level. Ember One provides funding for up to two
engineers and one project manager for a duration of six
months to design and develop a validated ~100 Watt
hashboard standard. This hashboard features a USB adapter
to connect to a variety of controllers, variable input voltage
from 12VDC to 24VDC to facilitate integration into a wide
range of applications, and a standardized PCB footprint to
make expansion seamless regardless of series.

The first series in the Ember One line up will feature twelve
Bitmain S19j Pro BM1362 ASIC chips, a decision made
based on availability and affordability. The corresponding
heat-sink will be included with the project. Subsequent
Ember One series hashboards will feature a range of
different ASIC chips from different manufacturers, possibly
including those that should be released any day now from a
company who’s name starts with “B” and ends with “lock”.
Much like the Bitaxe project, certain peripherals are not
included in the Ember One project. For example, Ember
One does not include firmware architecture or

implementation, enclosure design, manufacturing support,
sales, distribution, marketing, or customer technical
support; those are all areas of opportunity for commercial
applications to thrive. Unlike the Bitaxe project, Ember One
is not a complete mining system design but only the
standardized hashboard. The Ember One project is being
leveraged as a springboard to launch the next two projects
which is 1) the complete mining system built with any of
the Ember One series hashboards including design details
for everything needed to produce a plug and play unit and
2) an open-source, multi-driver compatible, Linux based
Bitcoin mining firmware. More details to be announced.

Stay tuned to POD256 for updates and watch out for the
next 256 Foundation newsletter.

Actionable Advice:
Here are steps you can take to solo mine using your own
Bitcoin node, your own Stratum server, and your own
miner. In this section, you will see how to spin up a
BitcoinCore full node, run an instance of a Public-Pool
Stratum server, and configure a Bitaxe to mine directly to
the Bitcoin network without any third party involvement.

Materials: You don’t need any fancy or expensive
equipment to follow along. Everything you will see in this
guide was done with an old Raspberry Pi, an old external
solid state drive, and a Bitaxe 401. The Raspberry Pi is a
model 4B with 4GB of RAM. If you want to purchase a
Raspberry Pi, then check here for distributors. Be
forewarned that using a Raspberry Pi with 4GB of RAM to
synchronize the full blockchain will take at least three
weeks if not a month. Also, you will probably get better
stratum server performance from using better hardware.
This was really just an exercise in using the lowest barrier
to entry hardware for demonstration purposes. There is no
reason you could not complete this kind of project on a
refurbished ThinkPad like any of these. You may want to
use an external storage volume with at least 2TB of storage
capacity for the complete copy of the blockchain. The
Samsung T7 is a good option if you need one. You will also
need a microSD card, 64GB is more than enough capacity
and these are a decent option if you need one. If you don’t
have a Bitaxe already, you can buy one for less than $200
from any of these vendors.

This guide assumes you’re running Linux on your primary
computer that you will be using to communicate with the
Raspberry Pi and Bitaxe, if you’re running Windows or
MacOS then you should be able to find system specific
instructions that differ from this guide in the linked
resources.

Step 1 – Prepare The Raspberry Pi
You will need a microSD card to install the Raspberry
Operating System on. Then you can download the
Raspberry Pi Image from:

The 256 Foundation
Page 3 of 10

https://bitaxe.org/legit.html
https://www.samsung.com/us/computing/memory-storage/memory-cards/evo-select-adapter-microsdxc-64gb-mb-me64ka-am/
https://semiconductor.samsung.com/us/consumer-storage/portable-ssd/t7/
https://www.lenovo.com/us/outletus/en/laptops/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://256foundation.org/
https://www.pod256.org/
https://www.pod256.org/episodepage/057-from-sweden-to-silicon-bitcoins-global-journey

https://www.raspberrypi.com/software/operating-systems/
Raspberry Pi OS Lite Bookworm 64-bit was used for this
guide.

The SHA256 digest is available on the download page,
open a terminal window and run the following command
from the same folder (usually /Downloads) as the
compressed file you just downloaded and compare the
results to verify. Use the name of your specific file in place
of this example:

$ sha256sum 2024-11-19-raspios-bookworm-arm64-
lite.img.xz

[IMG-005] Raspberry Pi OS SHA256 Checksum

With the compressed image file verified, flash the image to
a freshly formatted microSD card using the Raspberry Pi
Imager or B a l e na Etcher or similar flashing program.

In the Raspberry Pi Imager, you can add the SSH file and
“userconf” file in the boot partition during the flashing
process. If you are using Balena or a similar program
instead, the directions are pretty straight forward, just
follow the prompts in the software. Basically you will just
select the image file you want to flash, then select the
microSD card you want to flash that image to, and then the
software takes care of the rest.

After flashing, in a terminal window, change directory to
the boot partition of the microSD card and enable SSH
functionality by writing a blank file titled "ssh" with no file
extension in the root of the boot partition. You can open a
terminal window directly in the file path you want by
looking at it with the file explorer, clicking on the 3-dot
menu next to the file path at the top of the explorer window,
and selecting “Open in Terminal”.

$ sudo touch ssh

Now you can create the login credentials and save them to
the “userconf” file you are going to generate. First you need
to decide on a password and then you need to encrypt it.
Open a second terminal window and from your default
home file path run:

$ echo INSERTYOURPASSWORD | openssl passwd -6 -
stdin

You should receive a response that looks like a random
string of characters and maybe there are some dollar signs
or periods in it. You want to copy the entire string in that
response by highlighting it, right clicking on it, and
selecting “copy”.

Then back in the first terminal window from the microSD
card boot partition path run:

$ sudo touch userconf

then

$ sudo nano userconf

Those two commands just created a file named “userconf”
and then opened that file so you can put some text in it. On
a single line, type your Raspberry Pi username, a colon, and
the encrypted password string you generated (which should
be on your clipboard, so just right-click and select “paste”).
For example:

pi:
6wRLGhmKbL0bheJKh$0L60E09x.dQ.M4DvBjTvNETG0CtW.P
GuzQwTEtTvadngclQXkzVFiJD2z.WIYeyvV.hUZT6HdYDjiSYg
x0Arc0

Then hit ctrl+o to write, enter to save, and ctrl+x to exit.

Now eject the microSD card, insert into the Raspberry Pi,
and turn on the power.

From your primary computer, open a new terminal window
and run:

$ ssh pi@192.168.1.69 (or whatever your local Raspberry
Pi IP address is). If you don’t know what your Raspberry
Pi’s local IP address is then log into your router and check
your DHCP leases and look for the one with a “raspberrypi”
hostname. Your router is typically accessible from your web
browser at IP address 192.168.0.1 or 10.0.0.1 or something
similar. Do an internet search for your router’s specifics if
you need to. If you don’t have access to the router then you
can use a program like AngryIP to scan the network and
give you the same information.

You’ll probably receive a response that the device you are
connecting to isn’t trusted and then asked if you want to
proceed by typing yes or no, type yes. You should then be
asked for a password to login, enter the same password you
used to generate that encrypted string that was saved in the
“userconf” file.

Once logged in to the Raspberry Pi, ensure your
environment is all up to date by running:

$ sudo apt update
then
$ sudo apt upgrade -y
Now your ready to connect the external storage volume.

Step 2 – Connect External Storage Volume
Plug in a freshly formatted storage volume, like a 2TB SSD,
to the Pi. Then through your SSH terminal window run:

The 256 Foundation
Page 4 of 10

https://angryip.org/
https://etcher.balena.io/
https://etcher.balena.io/
https://etcher.balena.io/
https://etcher.balena.io/
https://etcher.balena.io/
https://www.raspberrypi.com/software/
https://www.raspberrypi.com/software/
https://www.raspberrypi.com/software/operating-systems/

$ sudo fdisk -l

You should get a response with information about the
connected drives, one of them being the microSD card and
the other being your external hard drive. You want to
identify the device name of your external hard drive. For
example, "/dev/sda1". Write that device name down or just
remember it for a moment.

Now make a directory where you can mount your external
hard drive by running:

$ sudo mkdir /mnt/ext/

Then mount the external drive there by running:

$ sudo mount /dev/sda1 /mnt/ext/

Then refresh by running:

$ sudo systemctl daemon-reload

Be aware that each time you power off the Raspberry Pi you
will need to run those last two commands again to mount
the storage volume if you have it connected. If you want to
have the “fstab” file permanently modified to reflect this
drive then you can edit it following instructions like these.
That’s it for connecting and mounting the external hard
drive. Easy right? You’re doing great and now you’re ready
to install Docker onto your Raspberry Pi.

Step 3 – Install The Docker Engine
Docker gets installed before BitcoinCore because there are
some dependencies that BitcoinCore needs that are included
when installing Docker. First, you will need the Git tools,
from the home directory on the SSH terminal window run:

$ sudo apt install git-all -y

Now you can start getting Docker installed, these directions
can be found in more detail here if you need them:
https://docs.docker.com/engine/install/raspberry-pi-os/

Run the following commands to install all the various
Docker packages, make sure you fetch the correct URL for
each package by first checking:
https://download.docker.com/linux/raspbian/dists/
Then select your Raspberry Pi OS version (Bookworm in
this case), go to "Pool" > "stable", then select the applicable
architecture (armf in this case), then run the following six
commands ensuring that you are getting the latest available
versions of each package:

For the containerd package run:

$ sudo wget
https://download.docker.com/linux/raspbian/dists/
bookworm/pool/stable/armhf/containerd.io_1.7.24-
1_armhf.deb

For the docker-buildx-plugin package run:

$ sudo wget
https://download.docker.com/linux/raspbian/dists/
bookworm/pool/stable/armhf/docker-buildx-
plugin_0.19.3-1~raspbian.12~bookworm_armhf.deb

For the docker-ce-cli package run:

$ sudo wget
 https://download.docker.com/linux/raspbian/dists/
bookworm/pool/stable/armhf/docker-ce-cli_27.4.1-
1~raspbian.12~bookworm_armhf.deb

For the docker-ce-rootless-extras package run:

$ sudo wget
https://download.docker.com/linux/raspbian/dists/
bookworm/pool/stable/armhf/docker-ce-rootless-
extras_27.4.1-1~raspbian.12~bookworm_armhf.deb

For the docker-ce package run:

$ sudo wget
https://download.docker.com/linux/raspbian/dists/
bookworm/pool/stable/armhf/docker-ce_27.4.1-
1~raspbian.12~bookworm_armhf.deb

For the docker-compose-plugin package run:

$ sudo wget
https://download.docker.com/linux/raspbian/dists/
bookworm/pool/stable/armhf/docker-compose-
plugin_2.32.1-1~raspbian.12~bookworm_armhf.deb

You can verify your downloads by getting the GPG public
key file from one step back in the directory path from the
"dists" folder where it says "gpg", run:

$ sudo wget
https://download.docker.com/linux/raspbian/gpg

Now add that key to the system key-chain with:

$ sudo gpg --import gpg

Then run the gpg command with the verify flag and file
name for all six of the packages you downloaded:

$ sudo gpg --verify
containerd.io_1.7.24-1_armhf.deb
$ sudo gpg --verify docker-buildx-plugin_0.19.3-
1~raspbian.12~bookworm_armhf.deb
$ sudo gpg --verify docker-ce_27.4.1-
1~raspbian.12~bookworm_armhf.deb
$ sudo gpg --verify docker-ce-cli_27.4.1-
1~raspbian.12~bookworm_armhf.deb
$ sudo gpg --verify docker-ce-rootless-
extras_27.4.1-1~raspbian.12~bookworm_armhf.deb
$ sudo gpg --verify docker-compose-plugin_2.32.1-
1~raspbian.12~bookworm_armhf.deb

The 256 Foundation
Page 5 of 10

https://youtu.be/A7xH74o6kY0?si=qC8vB5GemVEOJEG7
https://download.docker.com/linux/raspbian/dists/
https://docs.docker.com/engine/install/raspberry-pi-os/

You should get a response for each verification, you are
looking for a "good signature" to the public key you
imported, for example:

[IMG-006] Docker Package Verification

The warning is just trying to tell you that you have not
certified the public key which is an additional verification
step and beyond the scope of this guide. Basically, it is
trying to encourage you to contact the developer and verify
that their signature fingerprint matches the one in your
terminal ending with E2D8 8D81 803C 0EBF CD88.
Keybase is a good place to start if you want to find publicly
posted keys for helping you verify and certify.

Now you need to decompress and install all six of those
packages buy running:

$ sudo dpkg -i containerd.io_1.7.24-1_armhf.deb
$ sudo dpkg -i docker-buildx-plugin_0.19.3-
1~raspbian.12~bookworm_armhf.deb
$ sudo dpkg -i docker-ce-cli_27.4.1-
1~raspbian.12~bookworm_armhf.deb
$ sudo dpkg -i docker-ce-rootless-extras_27.4.1-
1~raspbian.12~bookworm_armhf.deb
$ sudo dpkg -i docker-ce_27.4.1-
1~raspbian.12~bookworm_armhf.deb
$ sudo dpkg -i docker-compose-plugin_2.32.1-
1~raspbian.12~bookworm_armhf.deb

You might encounter errors about missing dependencies
with a couple of those packages. If you do, then run the
following command to correct them and after running that
command, try decompressing and installing the package
again:

$ sudo apt --fix-broken install

The Docker daemon should start automatically. Ensure
Docker is working by running:

$ sudo service docker start
then
$ sudo docker run hello-world

You should get a response like: "Hello from Docker!
This message shows that your installation appears to be
working correctly."

If you made it that far then you have successfully installed
Docker and you are ready to install BitcoinCore.

Step 4 – Install BitcoinCore
From your SSH terminal window and from the home
directory make a working folder for all the Bitcoin related
files by running:

$ sudo mkdir /bitcoin

Then change directories into that folder with:

$ cd /bitcoin

Navigate to the BitcoinCore download page in the web
browser from your primary computer and copy the
download link for the latest version of BitcoinCore for your
system. BitcoinCore v28.0 was used here, specifically
“bitcoin-28.0-aarch64-linux-gnu.tar.gz”.

Copy the link for the package you want (ARM Linux 64-bit
in this example) and then paste that link in the following
command of your SSH terminal window:

$ sudo wget
https://bitcoincore.org/bin/bitcoin-core-28.0/
bitcoin-28.0-aarch64-linux-gnu.tar.gz

If you want to verify your download, which is good
practice, download the “SHA256SUMS.asc” signature file
along with the “SHA256SUMS” hash values file by running
the following two commands:

$ sudo wget
https://bitcoincore.org/bin/bitcoin-core-28.0/
SHA256SUMS

then

$ sudo wget
https://bitcoincore.org/bin/bitcoin-core-28.0/
SHA256SUMS.asc

Check that the SHA256 hash for the downloaded file exists
in the SHA256SUMS file by running:

$ sha256sum --ignore-missing --check SHA256SUMS

You should get a response back like: bitcoin-28.0-
aarch64-linux-gnu.tar.gz: OK

You will need some developer keys in order to verify the
SHA256SUMS file accurately represents what the
developers signed with their signatures, you can find all the
developer signatures at:
https://github.com/bitcoin-core/guix.sigs/blob/main/builder-
keys/
You can download any of those keys by running the sudo
wget command and appending the whole URL for the raw
GPG file you want, for example:

$ sudo wget

The 256 Foundation
Page 6 of 10

https://github.com/bitcoin-core/guix.sigs/blob/main/builder-keys/
https://github.com/bitcoin-core/guix.sigs/blob/main/builder-keys/
https://bitcoincore.org/en/download/
https://keybase.io/

https://raw.githubusercontent.com/bitcoin-core/
guix.sigs/refs/heads/main/builder-keys/
fanquake.gpg

Continuing with the fanquake example, import that
downloaded key by running:

$ sudo gpg --import fanquake.gpg

You should get a response indicating that the file was
imported.

Then run the following command to verify the signature
matches:

$ sudo gpg --verify SHA256SUMS.asc

You should get a response for each of the signatures, even
the ones you did not download a public key for. You are
looking for "good signature" next to one of the public keys
you imported, for example:

[IMG-007] BitcoinCore Verification

The warning is just trying to tell you that you have not
certified the public key which is an additional verification
step and beyond the scope of this guide. For all intents and
purposes, we have downloaded our file, verified that the
hash value for that file is written in the accompanying

verification file, then verified that the developers agree that
is the correct hash value by signing off on the .asc file.

With the download verified, now decompress it by running
the following command using which ever file name matches
your download:

$ sudo tar -xzf bitcoin-28.0-aarch64-linux-
gnu.tar.gz

This will have created a directory called “bitcoin-28.0”. You
can verify this by checking the contents of the directory you
are currently in with the ls -la command. Now you want
to install BitcoinCore here by running:

$ sudo install -m 0755 -o root -t /bitcoin
bitcoin-28.0/bin/*

This is a good point to make a few configuration changes in
the “bitcoin.conf” file before running bitcoind. Return to
your home directory with this command:

$ cd ~

Then copy/paste the default “bitcoin.conf” file from the
/bitcoin/bitcoin28.0 directory to where you will have
your Bitcoin data directory setup on the external hard drive
with this command:

$ sudo cp
/bitcoin/bitcoin-28.0/bitcoin.conf /mnt/ext

Then change into the directory where you just pasted that
configuration file with:

$ cd /mnt/ext

Then open the “bitcoin.conf” file to edit it by running:

$ sudo nano bitcoin.conf

There are many configuration changes here that you can
make if you want, only the bare minimum six
configurations for the purpose of this guide will be covered
here.

1) Scroll down to the line that reads # Enable publish raw
block in <address> and below that, delete the hashtag in
front of #zmqpubrawblock=<address> then replace
<address> with tcp://*:3000. For example, the end result
should look like this:

Enable publish raw block in <address>
zmqpubrawblock=tcp://*:3000

2) Scroll down to where it says # Allow JSON-RPC
connections from specified source. and below that,
delete the hashtag in front of #rpcallowip=<ip> and
replace <ip> with the Docker IP address, 172.16.0.0/12

The 256 Foundation
Page 7 of 10

(the ifconfig command can help you find various network
interfaces and the corresponding IP address for each one).
For example, the end result should look like this:

Allow JSON-RPC connections from specified
source. Valid values for <ip>
are a single IP (e.g. 1.2.3.4), a
network/netmask (e.g.
1.2.3.4/255.255.255.0), a network/CIDR (e.g.
1.2.3.4/24), all
ipv4 (0.0.0.0/0), or all ipv6 (::/0). This
option can be
specified multiple times
rpcallowip=172.16.0.0/12

3) Scroll down to where it says # Bind to given address
to listen for JSON-RPC connections. and below that,
you want to add three IP addresses. Delete the hashtag and
replace <addr>[:port] with your Raspberry Pi's local IP
address, your Docker IP address, and your local system IP
address. You can leave the port out of it since BitcoinCore
default's to port 8332. For example, the end result should
look like this:

Bind to given address to listen for JSON-RPC
connections. Do not expose
the RPC server to untrusted networks such as the
public internet!
This option is ignored unless -rpcallowip is
also passed. Port is
optional and overrides -rpcport. Use [host]:port
notation for
IPv6. This option can be specified multiple
times (default:
127.0.0.1 and ::1 i.e., localhost)
rpcbind=192.168.1.119
rpcbind=127.0.0.1
rpcbind=172.16.0.0/12

4) Scroll down to where it says # Password for JSON-RPC
connections. and below that, delete the hashtag in front of
#rpcpassword=<pw> and replace <pw> with whatever you
want your password to be in order to make RPC calls to
your Bitcoin node. For example, the end result should look
like this:

Password for JSON-RPC connections
rpcpassword=INSERTYOURPASSWORD

5) Scroll down to where it says # Username for JSON-RPC
connections. and below that, delete the hashtag in front of
#rpcuser=<user> and replace <user> with whatever you
want your username to be in order to make RPC calls to
your Bitcoin node. For example, the end result should look
like this:

Username for JSON-RPC connections
rpcuser=INSERTYOURUSERNAME

6) Lastly, scroll down to where it says # Accept command
line and JSON-RPC commands and below that, delete the
hashtag in front of #server=1. For example, the end result
should look like this:

Accept command line and JSON-RPC commands
server=1

Then hit ctrl+o to write, hit enter to save, and hit ctrl+x to
exit.

You can return to your home directory with this command:

$ cd ~

Then change directory to the /bitcoin folder and run this
command to start bitcoind, making sure you have your data
directory defined:

$ sudo ./bitcoind -datadir=/mnt/ext

You should see several lines of text scroll by, scroll up to
the beginning of those responses and double check that
bitcoind is using the directory that you want and the
configuration file you want. For example, the text should
read something like this:

[IMG-008] bitcoind Start Up

Then you want to just let bitcoind run and start
downloading the entire blockchain. This Initial Block
Download can take a few days on a Raspberry Pi with 4GB
of RAM so give it time. You won't be able to start mining
until the synchronization process is done. In the mean-time,
you can build the Public-Pool container.

Step 5 – Install the Public-Pool Container
While bitcoind is synchronizing, open a new terminal
window and SSH into your Raspberry Pi like before.

Clone Public Pool Git Repo:

$ sudo git clone
https://github.com/benjamin-wilson/public-pool.git

Change Directory to the new public-pool folder:

$ cd public-pool

Create a new environment file in the root of the public-pool
folder:

The 256 Foundation
Page 8 of 10

$ sudo touch .env

Open the new .env file:

$ sudo nano .env

Copy/Paste the contents from the .env.example file (from
https://github.com/benjamin-wilson/public-pool/blob/master
/.env.example) then modify the following lines to your
specific setup:

Change the IP on this line to the local IP address of your
Raspberry Pi:

BITCOIN_RPC_URL=http://192.168.1.119

Enter the RPC Username you entered into the bitcoin.conf
file:

BITCOIN_RPC_USER=INSERTYOURUSERNAME

Enter the RPC Password you entered into the “bitcoin.conf”
file:

BITCOIN_RPC_PASSWORD=INSERTYOURPASSWORD

Add a hashtag in front of this line:

BITCOIN_RPC_COOKIEFILE=

Delete the hash tag from this line:

BITCOIN_ZMQ_HOST="tcp://192.168.1.100:3000"

And change the 192.168.1.100 IP address to the local IP
address of your Raspberry Pi.

Add a hashtag in front of this line:

DEV_FEE_ADDRESS=

Change the POOL_IDENTIFIER to whatever you want to
show up in the blockchain when you win a block. For
example:

POOL_IDENTIFIER="/abolish the fed/"

ctrl+o to write, enter to save, ctrl+x to exit.

Docker Compose binds to “127.0.0.1” by default. To expose
the Stratum services on your server you need to update the
ports in the “docker-compose.yml” file, so run:

$ sudo nano docker-compose.yml

Scroll down to the ports section where it says:

ports:
 - "127.0.0.1:${STRATUM_PORT}:${STRATUM_PORT}/tcp"
 - "127.0.0.1:${API_PORT}:${API_PORT}/tcp"

Delete everything between to quotation marks on both lines
and add “0.0.0.0:3333:3333/tcp” and
“0.0.0.0:3334:3334/tcp” respectively. For example, the end
result should look like this:

ports:
 - "0.0.0.0:3333:3333/tcp"
 - "0.0.0.0:3334:3334/tcp"

Press ctrl+o to write, enter to save, ctrl+x to exit.

While still in the public-pool folder run:

$ sudo docker compose build

After several minutes you should get a confirmation like
Service public-pool Built. Then run:

$ sudo docker compose up -d

This command will take some time to execute but you
should see some lines of text flying by in the terminal
window in the mean-time. Eventually, you should get a
confirmation like Container public-pool Started. This
completes the steps needed for building your Bitcoin node
and Stratum Server. Now you can bring your miner into the
loop.

Step 6 – Connecting Bitaxe
A Bitaxe was used in this example but you should be able
use any miner in theory.

Plug your Bitaxe into the power supply.

Use your mobile phone to connect via WiFi to the Bitaxe
network, this should be something like "Bitaxe_4A89" or
"Bitaxe_5B09" etc.

Once connected, open a web browser on your mobile phone
and enter "192.168.4.1" in the address bar. This should
bring you to the Bitaxe Dashboard.

From the menu, scroll down to “Settings”.

Update the WiFi SSID to your local WiFi network name.

Enter the password for your local WiFi network in the WiFi
Password dialog box.

For the Stratum URL, enter the local IP address for your
Raspberry Pi.
Leave the Stratum Port as 3333.

For your Stratum User, enter your bitcoin address that you
want block rewards sent to. You can optionally append your
bitcoin address with a worker name, for example:
".bitaxe1".

The 256 Foundation
Page 9 of 10

https://github.com/benjamin-wilson/public-pool/blob/master/.env.example
https://github.com/benjamin-wilson/public-pool/blob/master/.env.example

Save those changes and then restart the miner. You can
navigate back to the dashboard and you should start seeing
some hashrate happening within less than a minute. If you
don't, go to the menu and scroll down to the Logs and click
on the Show Logs button to see what the Bitaxe is doing.

[IMG-009] Bitaxe Dashboard

If you experience problems and do not see any hashrate in
the Bitaxe dashboard after a minute or so, here are some
things you can check to get a better idea of what the
problem is:

Check the Bitaxe logs by navigating to the “Logs” option in
the side menu of the dashboard, then click on “Show Logs”.
Restart the Bitaxe if necessary. If you see errors about a
refused socket connection then you might need to double
check the IP addresses configured in your bitcoin.conf file
or Public-Pool .env file.

You can stop the Public-Pool service at anytime by running
the following command from the public-pool directory:

$ sudo docker compose stop

Restart the service again with:

$ sudo docker compose up -d

You can check the logs of the Public-Pool service by
running the following command from the public-pool
directory:

$ sudo docker compose logs

You Might need to run this command a couple times to get
the latest events. You want to see a response that shows you
are using ZMQ and it is connected, Bitcoin RPC is
connected, and that it is receiving some responses about the
mining information like in [IMG-010].

If you are seeing an error with the RPC connection then try
double checking the IP addresses configured in the
bitcoin.conf file and the Public-Pool .env file. Or if you see
errors about not being able to complete a “getmininginfo”

request then try double checking the port parameters you set
in the Public-Pool docker-compose.yml file.

[IMG-010] Docker Compose Logs

You can test the RPC connection with a command like this
from the /bitcoin directory:

$ sudo ./bitcoin-cli -rpcuser=YOURUSERNAME -
rpcpassword=YOURPASSWORD getblockchaininfo

You might need to wait for the blockchain data to finish
synchronizing before you can run RPC commands. Or if
your node is fully sync’d and you are still not able to make
RPC requests then double check the IP addresses you have
configured in the “rpcallowip” and “rpcbind” fields in the
bitcoin.conf file.

Conclusion:
Thank you for reading the first 256 Foundation newsletter.
Keep an eye out for more newsletters on a monthly basis in
your email inbox by subscribing at 256foundation.org. Or
you can download .pdf versions of the newsletters from
there as well. You can also find these newsletters published
in article form on Nostr.

If you are not currently mining to your own node, making
your own templates with open source mining hardware then
you now have zero excuses not to be.

Stay vigilant,
-econoalchemist

The 256 Foundation
Page 10 of 10

https://256foundation.org/

